future values - translation to greek
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

future values - translation to greek

IN MATHEMATICS, THE SQUARE ROOT OF AN EIGENVALUE OF A NONNEGATIVE SELF-ADJOINT OPERATOR
Singular values; Singular Values
  • semi-axes]] of the ellipse.

future values      
μελλοντικές αξίες
μελλοντικές αξίες      
future values
about to         
GRAMMATICAL CONSTRUCTION USED IN ENGLISH
Going-To future; Going to future; Be-going to future; Gonna; Going to; Be going to-future; Going to-future; Be-going-to future; Going-to; To be to; Am to; Are to; Was to; Were to; Be to; Be + to; About to; To be going to; Be going to
prep. για

Definition

futuristic
¦ adjective
1. having or involving very modern technology or design.
2. (of a film or book) set in the future, typically in a world of highly advanced technology.
Derivatives
futuristically adverb

Wikipedia

Singular value

In mathematics, in particular functional analysis, the singular values, or s-numbers of a compact operator T : X Y {\displaystyle T:X\rightarrow Y} acting between Hilbert spaces X {\displaystyle X} and Y {\displaystyle Y} , are the square roots of the (necessarily non-negative) eigenvalues of the self-adjoint operator T T {\displaystyle T^{*}T} (where T {\displaystyle T^{*}} denotes the adjoint of T {\displaystyle T} ).

The singular values are non-negative real numbers, usually listed in decreasing order (σ1(T), σ2(T), …). The largest singular value σ1(T) is equal to the operator norm of T (see Min-max theorem).

If T acts on Euclidean space R n {\displaystyle \mathbb {R} ^{n}} , there is a simple geometric interpretation for the singular values: Consider the image by T {\displaystyle T} of the unit sphere; this is an ellipsoid, and the lengths of its semi-axes are the singular values of T {\displaystyle T} (the figure provides an example in R 2 {\displaystyle \mathbb {R} ^{2}} ).

The singular values are the absolute values of the eigenvalues of a normal matrix A, because the spectral theorem can be applied to obtain unitary diagonalization of A {\displaystyle A} as A = U Λ U {\displaystyle A=U\Lambda U^{*}} . Therefore, A A = U Λ Λ U = U | Λ | U {\textstyle {\sqrt {A^{*}A}}={\sqrt {U\Lambda ^{*}\Lambda U^{*}}}=U\left|\Lambda \right|U^{*}} .

Most norms on Hilbert space operators studied are defined using s-numbers. For example, the Ky Fan-k-norm is the sum of first k singular values, the trace norm is the sum of all singular values, and the Schatten norm is the pth root of the sum of the pth powers of the singular values. Note that each norm is defined only on a special class of operators, hence s-numbers are useful in classifying different operators.

In the finite-dimensional case, a matrix can always be decomposed in the form U Σ V {\displaystyle \mathbf {U\Sigma V^{*}} } , where U {\displaystyle \mathbf {U} } and V {\displaystyle \mathbf {V^{*}} } are unitary matrices and Σ {\displaystyle \mathbf {\Sigma } } is a rectangular diagonal matrix with the singular values lying on the diagonal. This is the singular value decomposition.